Muiscamera hersenen

Deze camera neemt het denken van je hersenen op


Wat gebeurt er in je hoofd? Het is een vraag die neurowetenschappers al lange tijd beantwoord willen hebben. Van de weg naar huis weten tot herinneren waar je voedsel kan vinden, de manier waarop de hersenen informatie verwerken is al jaren grotendeels een mysterie.

Een reden waarom het moeilijk is voor wetenschappers om te leren wat er in de hersenen gebeurt, is dat ze niet kunnen zien hoe de informatiebewegende neuronen in realtime werken. “Dat is de heilige graal van begrijpen hoe de hersenen werken”, zegt Kunal Ghosh, oprichter van Inscopix, het bedrijf achter de live-streaming hersencamera die nu wereldwijd in laboratoriums gebruikt wordt.

De muiscamera die een paar jaar geleden voor het eerst geïntroduceerd werd, wordt zowel gebruikt in onderzoekslaboratoria als tijdens farmaceutisch testen. De eerste bevindingen worden nu langzaam aan gedeeld.

Het apparaat is onderdeel van een groeiend netwerk van technologie dat gebouwd wordt om de fundamentele vraag te beantwoorden: wat doen de hersenen? Deze vraag wordt niet alleen gesteld door wetenschappers in een lab, maar ook regeringen wereldwijd willen het antwoord weten. In de VS heeft men al meer dan 300 miljoen dollar geïnvesteerd in de eerste twee jaar van een tienjarig project, wat ze het “BRAIN initiative” noemen.

Het project werd in 2013 gestart door President Obama en is gericht op het begrijpen van de relatie tussen de activiteiten van de hersenen en het gedrag van mensen. Dr Thomas Insel, directeur van de National Institute of Mental Health geeft het volgende aan: “Het BRAIN initiative probeer de taal van de hersenen te decoderen met de snelheid van gedachte”.

 

Een nieuwe fluorescente camera

Deze eerste live-action hersencamera die gebouwd is om de grote bewegingen van de hersenen vast te leggen die we nog nooit eerder hebben gezien, is een onderdeel van een tweedelig systeem. Ten eerste worden muizen geïnjecteerd met een superdun naaldachtig objectief of ze gekweekt in het laboratorium met groepen van fluorescente cellen die oplichten voor de systeemcamera. Zodra een aantal hersenneuronen van de muizen gloeien, kunnen onderzoekers de knaagdieren zeer kleine camera’s bevestigen, welke de muizen dragen als een helm.

Professor Mark Schnitzer die hielp om de hersencamera uit te vinden, heeft zelf ook een aantal belangrijke ontdekkingen gedaan over hoe de hersenen coderen voor plaats en ruimte. Hij en zijn team bij de Stanford University ontdekten dat bepaalde neuronen alleen maar oplichten toen de muis op een bepaalde plek was. “Dus we kunnen zien hoe de hersenen zich aanpassen wanneer ze meer bekend raken in een omgeving en hoe deze neurale circuits werken wanneer dieren een bepaalde route herinneren.”

“Het gaat om meer dan begrijpen hoe de hersenen werken”, zegt Ghosh. “Het gaat om het begrijpen hoe de hersenen niet werken en compleet nieuwe therapeutische methodes kunnen ontwikkelen”, voor ziektes zoals Parkinson en Alzheimer, aandoeningen zoals Schizofrenie en zelfs nicotineverslavingen.

Professor Schnitzer zegt dat de camera grote gevolgen kan hebben op de manier waarop we deze ziektes behandelen en medicijnen ontwikkelen, zodat een meer geavanceerde aanpak voor behandelingen mogelijk is. Dit komt volgens hem omdat wanneer wetenschappers meer weten over waar en hoe geheugens en patronen gecreëerd worden, behandelingen meer kunnen doen dan alleen maar het aantal chemicaliën verhogen of verlagen. In plaats daarvan kunnen ze nadenken over hoe het gedrag gevormd is en die informatie gebruiken om een behandeling op te stellen.

Activiteit hersenen tijdens denken vastleggen

 

En nu?

Momenteel is de camera alleen maar voor knaagdieren. Inscopix zegt dat primaten de volgende stap zijn. Maar Insel, de mentale gezondheidsexpert, zegt dat een manier vinden om een camera voor de menselijke hersenen te bouwen belangrijk zal zijn nu we steeds meer ontdekken over hoe deze werken (zolang een camera uiteraard veilig geplaatst en geïnstalleerd kan worden, zonder fluorescente mensenhersenen te kweken).

Insel geeft aan dat honderdduizenden Parkinson patiënten al diepe hersenstimulatoren in hun hoofd hebben. En alhoewel een live-action hersencamera niet een antwoord zal kunnen geven op de veelgestelde vraag: “Wat denk je nu?”, kan hij wel helpen om ontdekken over hoe we denken en hoe we neurale problemen effectiever aan kunnen pakken wanneer de hersenen beginnen te ontsporen.

AirPods gevaarlijke straling

Draadloze oordopjes van Apple versturen schadelijke straling in je hersenen


Toen Apple de iPhone 7 onthulde werd duidelijk dat de standaard koptelefoon aansluiting er niet meer zou en dat betekende dus ook dat de EarPods niet meer meegeleverd zouden worden. Kort daarna bracht Apple een volledig draadloze versie van hun oordopjes uit, de AirPods. Deze waterbestendige oordopjes zijn volgens Tim Cook, de CEO van Apple, de eerste stappen naar een draadloze toekomst. Experts beweren echter ook dat deze AirPods gevaarlijke kankerverwekkende straling rechtstreeks in de hersenen van de gebruiker vrijlaten.

Net als bijna alle apparaten die Apple gebruikt voor connectiviteit verbinden deze AirPods rechtstreeks met je telefoon via Bluetooth. De verbinding van de Bluetooth naar de oordopjes gaat alleen naar de rechterkant. Vervolgens zal dit rechter oordopje nog een Bluetooth verbinding rechtstreeks naar het linker oordopje sturen. Dit is volgens experts de straling die rechtstreeks door je hersenen gaat.

Apple geeft echter aan dat alle Bluetooth apparaten RF-straling veroorzaken, maar deze straling blijft binnen de richtlijnen die vastgesteld zijn door de regelgevende instanties. Joel Moskowitz van de UC Berkeley School of Public Health onderzoekt echter samen met 200 wetenschappers de verschillende effecten van elektromagnetische velden op het menselijk lichaam en heeft kritiek geuit dat de vastgestelde richtlijnen veel te mild zijn.

Tijdens een gesprek met een journalist zei hij het volgende: “We spelen met vuur hier. Je plaatst een apparaat vlakbij je hersenen dat microgolven verstuurt”. Naast Moskowitz geven verschillende wetenschappers aan dat deze nieuwe volledig draadloze trend, waar Apple niet de enige fabrikant van is, mogelijk voor gezondheidsaandoeningen kan zorgen als er veelvuldig gebruik van gemaakt wordt.

In het verleden hebben wetenschappers aangegeven dat RF-straling simpelweg niet voldoende kracht heeft om cellulaire of zelfs DNA schade te veroorzaken. Die bewering is echter erg tegenstrijdig wanneer die signalen van RF-straling vergeleken worden met krachtigere apparaten, zoals die van röntgenmachines.

AirPods straling hersenen

Dit is volgens Moskowitz al tientallen jaren geobserveerd. Het is net alsof we elke keer opnieuw ontdekken dat Bluetooth schadelijk is en dit proberen te vergeten, omdat we niet weten hoe we het qua beleid in de gaten moeten houden.

Het is bewezen dat RF-straling de bloed-hersenbarrière verzwakt. Dit zorgt ervoor dat schadelijke gifstoffen makkelijker bij de hersenen kunnen komen, waardoor het logisch is dat men grote zorgen heeft over het plaatsen van apparaten die RF-straling versturen in de buurt van je hersenen.

“Alhoewel we niet weten wat de lange termijn risico’s zijn van Bluetooth apparaten, waarom zou je apparaten die microgolven versturen in je oren doen in de buurt van de hersenen wanneer er veiligere manieren zijn om een mobiele telefoon te gebruiken en naar muziek te luisteren?”, zegt Moskowitz. Hij gaat verder: “Ik raad aan om bedrade hoofdtelefoons of oordopjes te gebruiken of handsfree te bellen met je telefoon, niet draadloze oordopjes”.

Als we het probleem echter dieper bestuderen, dan kunnen we vaststellen dat mobiele telefoons al gebruik maken van een soort van signaal van RF-straling; verschillende smartmeters maken ook gebruik van signalen die voor RF-straling zorgen en hetzelfde geldt voor wifi-verbindingen. Vervolgens moeten we dus de volgende vraag stellen: maakt het echt uit of we een rechtstreekse hersenen naar RF-straling verbinding hebben? Als je bijvoorbeeld in een grote stad zoals Amsterdam loopt, dan kan je mogelijk contact maken met schadelijke RF-straling van alle technologie die gebruikt wordt.

Een onderzoek in 2015, welke gepubliceerd is in het tijdschrift Electromagnetic Biology & Medicine, geeft aan dat er andere apparaten zijn die RF-straling en ernstige gezondheidsproblemen kunnen veroorzaken, waaronder kanker. De wetenschappers van dit onderzoek vonden verscheidene eerdere onderzoeken die lieten zien dat RF-straling een soort van oxidatieve stress verstuurt. Dit kan er op zijn beurt voor zorgen dat de antioxidant verdedigingen van het lichaam overweldigd raken en in essentie ervoor zorgen dat vrije radicalen vrij spel hebben.

Deze vrije radicalen zijn kleine moleculen die cellen en DNA-structuur kunnen beschadigen. Men denkt ook dat deze een grote rol spelen bij het veroorzaken van verschillende soorten kanker, hartziektes en verschillende andere gezondheidsproblemen.

Met al deze onderzoeken en zorgen gericht op gezondheidsproblemen met betrekking tot straling van mobiele telefoons, Bluetooth apparaten en nu de Apple AirPods en andere volledig draadloze oordopjes, zullen kopers van de iPhone 7 en later mogelijk bezorgd zijn over deze bevindingen.

Nog een zogenaamd ‘interphone’ onderzoek dat gefinancierd werd door de industrie, liet zien dat er een dramatische verhoging van risico is op akoestische zenuwtumoren, hersentumoren en zelfs oorspeekselkliertumoren bij individuen die mobiele telefoontechnologie tien jaar of langer gebruiken. Het risico is zelfs nog hoger bij personen die gebruik maken van deze technologie voor hun 20e.

Straling draadloze oordopjes

In het begin van 2016 kwamen verschillende wetenschappers en dokters in de VS samen tijdens een pediatrie conferentie in Baltimore. Deze conferentie werd gehouden om duidelijk te maken dat gebruik van mobiele telefoons gekoppeld kan worden aan hersenkanker. Dr Devras Davis, de president van de Environmental Health Trust gaf het volgende aan: “De hoeveelheid bewijs is duidelijk, mobiele telefoons veroorzaken hersenkanker”.

Nieuw implantaat verlicht pijn door brein te misleiden met elektrische pulsen


Het misbruik en overmatig gebruik van medische pijnstillers is een groeiend probleem, met name in de Verenigde Staten. Om de patiënten te helpen bij het verminderen van hun afhankelijkheid van opiaten en andere krachtige pijnstillers, heeft een onderzoeksteam van de Universiteit van Texas in Arlington gewerkt aan een alternatief om pijn te beheersen – elektrische stimulatie van de hersenen.

De onderzoekers van UTA zijn niet de eersten die onderzoek doen naar elektrische impulsen als een manier om pijn te verminderen. Er bestaat al een experimentele klasse van vergelijkbare draagbare apparaten, die gebruik maken van de techniek die bekend staat als transcutaneous electrical nerve stimulation, of TENS. Deze apparaten geven kleine en pijnloze elektrische pulsen af aan de zenuwen met elektrodes, die op de huid worden geplaatst. De pulsen zijn ontworpen om de zenuwen te verwarren, en het pijnsignaal te blokkeren dat naar de hersenen wordt gestuurd – waardoor de pijn van dat gebied van je lichaam onmiddellijk wordt verlicht.

Het apparaat van UTA gaat nog een stap verder met deze techniek door te werken op het niveau van de ruggengraat, en pijnsignalen te blokkeren zodat ze de hersenen nooit bereiken. “Dit is de eerste studie waarbij een draadloos elektronisch apparaat wordt gebruikt om pijn te verminderen door het beloningscentrum van de hersenen direct te stimuleren,” zegt Yuan Bo Peng, psychologieprofessor van UTA.

Het apparaat werd ontwikkeld door onderzoeker J.C. Chiao, die persoonlijke ervaring heeft met pijn vanwege verschoven wervels en afgeknepen zenuwen in zijn rug en nek. Hij zag ook hoe zijn oom worstelde met pijnbestrijding tijdens kankerbehandeling, en werd daardoor verder gemotiveerd om het onderzoek achterna te gaan.

Het systeem dat Chiao’s team ontwikkelde maakt gebruik van een speciaal ontworpen draadloos apparaat, gedragen door de patiënt, dat het ventrale tegmentale gebied van de hersenen stimuleert. De resultaten van het onderzoek door UTA toonden aan dat stimulatie van dit deel van het brein effectief was bij het verminderen van pijnsignalen die door het ruggenmerg reizen. Dit proces blokkeert niet alleen pijnsignalen, het moedigt ook de afgifte van dopamine af – een tof die effect heeft op de belonings- en genotscentra van het brein. “We hebben nu bevestigd dat het stimuleren van dit deel van de hersenen ok kan worden gebruikt als pijnstillend instrument,” zei Peng in een bericht over de ontdekking.

Het team staat bekend om hun baanbrekende werk in pijnbestrijding, en hoopt verder te gaan met hun werk op dit gebied. “We zijn weliswaar nog steeds in de laboratoriumfase, maar deze nieuwe methode geeft hoop dat we in de toekomst chronische pijn zullen kunnen verlichten zonder de bijwerkingen van medicatie,” zei Peng.

IBM werkt aan hersenimplantaat dat epileptische aanvallen kan detecteren en voorspellen


Stefan Harrer, een onderzoeker van IBM, werkt aan een innovatieve manier om de hersenactiviteit van een persoon te observeren. Zo kunnen epileptische aanvallen worden voorspeld, zoals Wired rapporteerde. Samen met neurologen van de Australische tak van het bedrijf werkt Harrer aan een computersysteem, vergelijkbaar met een ‘kunstmatig brein,’ dat zich eraan wijdt om een echt brein te analyseren.

Harrer en zijn team gebruiken een neuraal netwerk, een softwareapplicatie die hersengolven interpreteert. In dit systeem worden de hersengolven van het brein van een patiënt aan het neurale netwerk doorgegeven, en geanalyseerd door de hardware van IBM. Het softwaresysteem wordt aangedreven door een experimentele IBM-chip genaamd TrueNorth. De TrueNorth is gebouwd met een architectuur die het menselijk brein nabootst, waardoor het een efficien neuraal netwerk wordt.

Het team stelt zich voor dat de chip wordt gebruikt in combinatie met een externe computer, en uiteindelijk een draagbaar apparaat, die samenwerkt met een hersenimplantaat. Het implantaat verstuurt EEG-informatie naar het apparaat met de TrueNorth, dat vervolgens de data gebruikt om de waarschijnlijkheid van een epileptische aanval te voorspellen. “We willen dit doen met een draagbaar systeem dat je op een patiënt plaatst, en dat analyse kan verrichten in real-time, 24/7,” zei Harrer. “Dat is de enige manier waarop deze technologie invloed kan hebben buiten coole onderzoeksrapporten.” Als een hersengolfpatroon wordt herkend dat voorafgaat aan een aanval, zal het systeem overgaan op het alarmeren van patiënten en doctoren met een verbonden smartphone.

Met gebruik van data die is verkregen uit eerdere implantaatstudies, verwachten de wetenschappers dat ze “dieper zullen kunnen kijken binnen de structuur van de onderliggende activiteit van een epileptische aanval.” Harrer en zijn team hopen deze informatie te gebruiken om het apparaat af te stellen, zodat het aanvallen van te voren kan voorspellen en zelfs zou kunnen tegenhouden voor ze optreden. In dit laatste geval zou het kunstmatige brein compenseren voor de fouten die worden gemaak door de echte hersenen.